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αs corrections to the matrix elements 〈sℓ+ℓ−|O1,2|b〉 calculated in the present paper lead

to a decrease of the perturbative part of the q2-spectrum by 10% − 15% relative to the
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1. Introduction

Flavor-changing neutral currents play an important role in the indirect search for new

physics. For inclusive decays there exists the framework of operator-product expansion,

which makes theoretically clean predictions possible. Of special interest in this context is

the decay mode B → Xsℓ
+ℓ−. In the regions where the lepton invariant mass squared q2

is far away from the cc̄-resonances, the dilepton invariant mass spectrum and the forward-

backward asymmetry can be precisely predicted.

The status of the calculation of these observables is the following: The leading logarith-

mic (LL) and the next-to-leading logarithmic (NLL) QCD contributions were calculated
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in [2 – 4]. Next-to-next-to-leading logarithmic (NNLL) corrections to the Wilson coefficients

at the matching scale µ ∼ mW , which required to perform two-loop matching calculations

of the full standard model (SM) theory onto the effective theory, have been worked out

in [5 – 8]. The anomalous dimensions matrices needed to obtain the Wilson coefficients

at the low scale µ ∼ mb (requiring up to three-loop calculations for certain entries) were

obtained in [5, 9 – 12]. NNLL QCD corrections at the level of the matrix elements of the

operators involved were calculated for the dilepton invariant mass spectrum and for the

forward-backward asymmetry in [13 – 17, 1]. Power corrections of the order 1/m2
b , 1/m2

c

and 1/m3
b have been worked out in [18 – 24]. Finally, in [25 – 27] certain classes of logarith-

mically enhanced electromagnetic corrections were taken into account.

So far, analytic results for the NNLL QCD corrections to the matrix elements associated

with the operators O1 and O2 are only available in the region of low q2. The corresponding

results were obtained as a double-expansion in mc/mb and q2/m2
b [13 – 15]. The present

paper deals with the NNLL QCD corrections in the high q2 region, i.e. q2 > 4m2
c . In

particular we evaluate virtual QCD corrections to the matrix elements of the operators O1

and O2 at order αs. In contrast to [1], where the relevant master integrals were calculated

numerically, we present these matrix elements as analytic functions of mc and q2. The

purpose of the present paper is twofold: First, to deliver a non-trivial independent check

of the results found in [1] and second, to provide the user with analytic formulas in which

the parameters (mc/mb and µ/mb) and q2 can easily be changed.

To get these analytic results, we perform an expansion in mc/mb and keep the full an-

alytic dependence on q2. We expand the two-loop Feynman integrals by combining method

of regions [28 – 31] and differential equation techniques [32 – 35]. We end up with an expan-

sion of 〈sℓ+ℓ−|O1,2|b〉 up to the 20th power in mc/mb. As the resulting expressions for these

matrix elements are rather lengthy, we are not able to print them in the paper. We provide

Mathematica and c++ code of our results in the source files of the present paper at arXiv.

The well-known breakdown of the Λ/mb expansion at the endpoint q2 = m2
B seems to

question the relevance of the perturbative contributions in the high q2-region calculated in

this paper. However, as it was shown in [36] and [37] (illustated there for the analogous

lepton invariant mass spectrum in the inclusive semileptonic decay B → Xuℓν) that the

integrated high q2-spectrum allows for a modified version of the heavy-quark expansion

(the so-called hybrid expansion), our present work is well-motivated.

The paper is organized as follows. Sections 2 and 3 are dedicated to the technical

details of the calculation. We give all necessary definitions in section 2. In section 3

we explain the evaluation of the Feynman integrals in detail. In section 4 we investigate

the (numerical) stability of the expansion in mc/mb, concluding that retaining terms up

to the 20th power in mc/mb leads to precise results. In this section we also discuss the

numerical impact of our calculation on the dilepton invariant mass spectrum. In coincidence

with [1] we find that in the high q2 region the order αs corrections to the matrix elements

〈sℓ+ℓ−|O1,2|b〉 calculated in the present paper lead to a decrease of the perturbative part

of the q2-spectrum by 10% − 15% relative to the NNLL result in which these corrections

are put to zero and reduce the renormalization scale uncertainty to ∼ 2%.

– 2 –



J
H
E
P
1
2
(
2
0
0
8
)
0
4
0

b s

c

a)

O1,2

b s

c

b)

O1,2

b s

c

c)

O1,2

b s

c

d)

O1,2

b s

c

e)

O1,2

b s

c

f)

O1,2

Figure 1: Diagrams that have to be taken into account at order αs. The circle-crosses denote the

possible locations where the virtual photon is emitted (see text).

2. Definitions

As in the previous paper [14] we write the effective Hamiltonian that contributes to B →
Xsℓ

+ℓ− in the form

Heff = −4GF√
2

V ∗
tsVtb

10
∑

i=1

Ci(µ)Oi(µ), (2.1)

where we have neglected the small CKM combination V ∗
usVub. The operator basis is de-

fined as

O1 = (s̄LγµT acL)(c̄LγµT abL) , O2 = (s̄LγµcL)(c̄LγµbL) ,

O3 = (s̄LγµbL)
∑

q

(q̄γµq) , O4 = (s̄LγµT abL)
∑

q

(q̄γµT aq) ,

O5 = (s̄LγµγνγρbL)
∑

q

(q̄γµγνγρq) , O6 = (s̄LγµγνγρT
abL)

∑

q

(q̄γµγνγρT aq) , (2.2)

O7 =
e

g2
s

mb(s̄LσµνbR)Fµν , O8 =
1

gs
mb(s̄LσµνT abR)Ga

µν ,

O9 =
e2

g2
s

(s̄LγµbL)
∑

l

(l̄γµl) , O10 =
e2

g2
s

(s̄LγµbL)
∑

l

(l̄γµγ5l) ,

where the subscripts L and R refer to left- and right- handed components of the fermion

fields. The ingredients to obtain the Wilson coefficients Ci at the scale µ of order mb can

be found e.g. in [5, 8, 10].

In the present publication we calculate the virtual αs-corrections to the matrix elements

of O1 and O2 in the large q2 region. Using equations of motion, we write these αs-corrections

– 3 –
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in the form1

〈sℓ+ℓ−|Oi|b〉2-loops = −
(αs

4π

)2
[

F 7
i 〈O7〉tree + F 9

i 〈O9〉tree
]

. (2.3)

The diagrams that contribute at order αs to b → sℓ+ℓ− are shown in figure 1. By definition,

we include in F
(7,9)
1,2 only the contributions from the diagrams in figure 1a–e. As in [14], we

absorb the contribution from figure 1f into a modified Wilson coefficient C9. This procedure

is convenient, because only the diagram figure 1f contains infrared divergences.

The ultraviolet renormalization works analogously to [14]. In particular we use the

same evanescent operators. We use on-shell renormalization for the s- and the b-field and

renormalize mc in the pole mass scheme.

The kinematics is defined as follows: We denote the momentum of the incoming b-quark

by p and the momentum of the virtual photon by q. The momenta of the external fermions

are on-shell such that p2 = m2
b and (p − q)2 = 0, because we neglect the strange-quark

mass. Furthermore we use the notations

ŝ =
q2

m2
b

and z =
m2

c

m2
b

. (2.4)

3. Calculation of the master integrals

In the present section we explain for every diagram appearing in figure 1 the way we

evaluated the master integrals that are specific to it. In appendix A we list the master

integrals that appear in more than one diagram and which are straightforward to calculate.

We use the following notation

[dk] =

(

µ2

4π
eγE

)ǫ
ddk

(2π)d
, (3.1)

where d = 4 − 2ǫ.

For simplicity we set mb = 1 in the calculation of the master integrals, such that

m2
c = z. The dependence of the master integrals on mb can be easily restored by dimen-

sional analysis.

3.1 General remarks about calculation techniques

The Feynman integrals appearing in our calculation have been reduced to a set of master

integrals using the following methods: Tensor integrals i.e. integrals containing Lorentz in-

dices have been reduced to scalar integrals via the Passarino-Veltman reduction scheme [38].

Finally these scalar integrals can be further reduced by integration by parts (IBP) identi-

ties [39, 40]. In particular we used the algorithm described in [41]. To this end we used

the Maple implementation AIR [42] and a Mathematica implementation developed by us.

Since we consider the region ŝ > 4z, we expanded the master integrals in z and kept the

full analytic dependence in ŝ.

1Note that because of the extra factors 1/g2

s in the definition of O7 and O9 (2.3) is indeed of order αs.
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For power expanding Feynman integrals we use a combination of method of regions [28 –

31] and differential equation techniques [43, 32 – 35]. We consider a set of Feynman integrals

I1, . . . , In that depend on the expansion parameter z and that are related by a system of

differential equations:
d

dz
Iα =

∑

β

hαβIβ + gα. (3.2)

We obtain (3.2) by differentiating Iα with respect to z and applying IBP identities, from

where we obtain the original set of integrals and further integrals contained in gα, which

are simpler than Iα and have been calculated before. Expanding the objects appearing

in (3.2) in ǫ, z and ln z

Iα =
∑

i,j,k

I
(j,k)
α,i ǫizj(ln z)k

hαβ =
∑

i,j

h
(j)
αβ,iǫ

izj

gα =
∑

i,j,k

g
(j,k)
α,i ǫizj(ln z)k, (3.3)

and inserting (3.3) into (3.2) we obtain algebraic equations for the coefficients I
(j,k)
α,i

0 = (j + 1)I
(j+1,k)
α,i + (k + 1)I

(j+1,k+1)
α,i −

∑

β

∑

i′

∑

j′

h
(j′)
αβ,i′I

(j−j′,k)
β,i−i′ − g

(j,k)
α,i . (3.4)

By means of (3.4) we can reduce higher powers in z of Iα to lower powers. In practice this

means that we need the leading power and sometimes also the next-to-leading power of

Iα as initial condition for (3.4). We have calculated these initial conditions by method of

regions. Every region except the hard region leads to logarithms in z. As we obtain the

logarithms occurring at leading power both from method of regions and from the recurrence

relation (3.4), differential equations provide a non trivial check for method of regions, i.e.

we can make sure not to have forgotten or counted twice any region.

In (3.3) we did not specify which values the summation index j takes. Indeed we will

have to deal with integrals that come with half-integer values of j i.e. they have to be

expanded in
√

z. On the other hand we have to presume that there exists kmax such that

I
(j,k)
α,i = 0 for all k > kmax in order to solve (3.4). We use the algorithm that was described

in [34] to get the possible values for j and to determine kmax. In addition this algorithm

allows us to evaluate the coefficients I
(j,k)
α,i numerically. We used this feature to test the

initial conditions.

In the following we will show in detail how to evaluate the master integrals occurring

from the diagrams in figure 1 by this procedure.

3.2 Diagrams of figure 1a

The topology of figure 1a contains in addition to (A.2), (A.11), (A.12) and (A.13), which

– 5 –
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are easy to evaluate, these two master integrals

Ia1 =

∫

[dk][dl]
1

(k + p − q)2(k + p)2((k + l)2 − z)(l2 − z)

Ia2 =

∫

[dk][dl]
1

(k + p − q)2(k + p)2((k + l)2 − z)(l2 − z)2
(3.5)

where we use the notation (3.1) and assume implicitly that every denominator contains a

positive imaginary part +i0. We need both integrals in leading power i.e. at z0. There

are three regions that contribute to this power: The hard region kµ, lµ ∼ 1, the soft region

kµ ∼ 1, and lµ ∼ √
z and the collinear region where both k and l are collinear to p − q

(scaling see below). Both integrals get a leading power contribution in the hard region.

The hard region corresponds to setting z = 0 in the integrand. In this limit we can reduce

Ia2 to Ia1 by IBP identities. Ia1 at z = 0 can by evaluated via Feynman parameterization to

Ia1,h = − 1

(4π)4
(

µ2eγE+iπ
)2ǫ Γ(ǫ)Γ(2ǫ)Γ3(1 − ǫ)Γ(1 − 2ǫ)

Γ(1 + ǫ)Γ(2 − 2ǫ)Γ(2 − 3ǫ)
2F1(2ǫ, 1; 1 + ǫ; 1 − ŝ), (3.6)

where

2F1(a, b; c;x) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
dt tb−1(1 − t)c−b−1(1 − tx)−a (3.7)

with ℜc > ℜb > 0. We used the Mathematica packages described in [44, 45] to obtain the

expansion in ǫ of 2F1.

In the soft region kµ ∼ 1, lµ ∼ √
z only Ia2 gets a leading power contribution:

Ia2,s = z−ǫ

∫

[dk][dl]
1

(k + p − q)2(k + p)2k2(l2 − 1)2
. (3.8)

Using IBP identities, (3.8) can be reduced to a product of two simple one-loop integrals.

Let us consider the collinear region. We introduce the following light-like vectors n+

and n−, which fulfil n2
+ = n2

− = 0 and n+ · n− = 1. We define the decomposition of a

Lorentz vector into light-cone coordinates:

kµ = k−nµ
− + k+nµ

+ + kµ
⊥ (3.9)

where k± = k ·n∓. We choose n+ to be collinear to p−q and introduce the following scaling

k+, l+ ∼ 1, k⊥, l⊥ ∼
√

z and k−, l− ∼ z. (3.10)

As before, only Ia2 gets a leading power contribution in this region.

Ia2,c = z−2ǫ

∫

[dk][dl]
1

(k + p − q)2(2k+p− + 1)((k + l)2 − 1)(l2 − 1)2
. (3.11)

Via Feynman parameterization we evaluate (3.11), obtaining

−1

(4π)4
(

µ2eγE

)2ǫ Γ2(ǫ)

2Γ(1 − ǫ)
2F1(1, 1; 2 − ǫ; 1 − ŝ). (3.12)

– 6 –
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Finally the leading power contributions of the master integrals up to order ǫ0 read

I
(0)
a1 =

1

(4π)4
µ4ǫ

[

− 1

2ǫ2
+

ln (ŝ) − iπ − 5
2

ǫ

−1

2
ln2 (ŝ)+(5+2iπ) ln (ŝ)+Li2 (1−ŝ)+

13π2

12
−5iπ− 19

2

]

(3.13)

I
(0)
a2 =

1

(4π)4

[

1

2
ln (ŝ) ln2(z) + (iπ ln (ŝ) + Li2 (1 − ŝ)) ln(z)

−π2

2
ln (ŝ) + iπLi2 (1 − ŝ) − Li3 (1 − ŝ)

]

.

We continue with the calculation of the subleading powers of Ia1 and Ia2. By differ-

entiating Ia1 and Ia2 with respect to z and applying IBP identities we obtain a coupled

system of differential equations of the form (3.2) with h starting at order ǫ0 and z−1. More

explicitly (3.4) becomes

0 = (j + 1)I
(j+1,k)
aα,i + (k + 1)I

(j+1,k+1)
aα,i −

∑

β=1,2

i+2
∑

i′=0

j
∑

j′=−1

h
(j′)
αβ,i′I

(j−j′,k)
aβ,i−i′ − g

(j,k)
α,i . (3.14)

From (3.14) together with (3.13) we obtain the subleading powers in z of Ia1 and Ia2. We

also obtain the coefficient of the z0 ln z-term of Ia2, which we already calculated in (3.13).

This means that the differential equations provide a non-trivial check for method of regions,

which was used for the leading power calculation.

3.3 Diagrams of figure 1b

The topology figure 1b comes with the master integrals

Ib1 =

∫

[dk][dl]
1

((k + p)2 − 1)((k + p − q)2 − 1)(l2 − z)((k + l)2 − z)

Ib2 =

∫

[dk][dl]
1

((k + p)2 − 1)((k + p − q)2 − 1)(l2 − z)2((k + l)2 − z)

Ib3 =

∫

[dk][dl]
1

((k + p)2 − 1)((k + p − q)2 − 1)2(l2 − z)((k + l)2 − z)
. (3.15)

We need these integrals in leading power. Besides the hard region, where all of these

integrals get a leading power contribution, Ib2 also gets contributions from two further

regions. In the soft region defined by kµ ∼ 1 and lµ ∼ √
z Ib2 becomes

Ib2,s = z−ǫ

∫

[dk][dl]
1

((k + p)2 − 1)((k + p − q)2 − 1)(l2 − 1)2k2
, (3.16)

which is a product of (A.8) and a trivial tadpole integral. In the collinear region defined

by kµ ∼ 1, l+ ∼ 1, l⊥ ∼ √
z and l− ∼ z, Ib2 takes the form

Ib2,c = z−ǫ

∫

[dk][dl]
1

((k + p)2 − 1)((k + p − q)2 − 1)(l2 − 1)2(k2 + 2l+k−)
. (3.17)

– 7 –
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However, the collinear region has an overlap with the soft region, where (3.17) reduces

to (3.16). On the other hand (3.17) is indeed equal to (3.16) which can be seen by the

following argument: Consider the integration [dl]. The integrand depends besides on terms

constant in lµ only on l2 and l+ = l · n−. So nµ
− is the only Lorentz vector that multiplies

lµ. Because of Lorentz invariance the integral can only depend on n− through n2
− = 0.

So we can set n− to zero such that (3.17) reduces to (3.16). This is to say the collinear

region has already been taken into account by the soft region. To avoid double counting

we have to skip the contribution (3.17). Analogously we can introduce another collinear

region kµ ∼ 1, l ∼ n−. By the same argument we see that also this region has been already

taken into account in (3.16).

In the hard region IBP identities provide a reduction of (3.15) to the set of integrals

Ib1,h =

∫

[dk][dl]
1

((k + p)2 − 1)((k + p − q)2 − 1)l2(k + l)2

Ib2,h =

∫

[dk][dl]
1

((k + p)2 − 1)((k + p − q)2 − 1)l4(k + l)2
. (3.18)

These integrals can be evaluated via differential equations with respect to ŝ. By defining

~I =

(

Ib1,h

Ib2,h

)

(3.19)

and differentiating ~I with respect to ŝ we obtain a differential equation of the form

d

dŝ
~I = h~I + ~g (3.20)

where ~g contains the integrals (A.14) and (A.15). We define the expansion in ǫ

~I =
∞
∑

i=−2

~I(i)ǫi

h =

∞
∑

i=0

h(i)ǫi

~g =
∞
∑

i=−2

~g(i)ǫi (3.21)

and write (3.20) in the expanded form

d

dŝ
~I(−2) = h(0)~I(−2) + ~g(−2)

d

dŝ
~I(−1) = h(0)~I(−1) + h(1)~I(−2) + ~g(−1)

d

dŝ
~I(0) = h(0)~I(0) + h(1)~I(−1) + h(2)~I(−2) + ~g(0). (3.22)

In our special case h
(0)
12 = 0 such that (3.22) decouples and we can solve (3.22) by the

common methods separation of variables and variation of constants. From Feynman pa-

rameterization we see that the limit ŝ = 0 does not lead to additional divergences in ǫ and

– 8 –
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can be used as initial condition for (3.22). Finally we obtain

Ib1,h =
1

(4π)4
µ4ǫ

[

−1

2ǫ2
+

2
√

4−ŝ
ŝ

arcsin
√

ŝ
2 − 5

2

ǫ
+

3 (ŝ − 3) arcsin2
√

ŝ
2

ŝ − 1

+
−5π2ŝ−114ŝ+7π2+114

12 (ŝ − 1)
+

√

4−ŝ

ŝ

(

arcsin

√
ŝ

2
(−2 ln(4−ŝ)+ln (ŝ)+10)

+Cl2

(

2 arcsin

√
ŝ

2

)

− 2Cl2

(

2 arcsin

√
ŝ

2
+ π

))]

Ib2,h =
1

(4π)4
µ4ǫ

[

6 arcsin2
√

ŝ
2 − π2

6

ǫ
+ (12 ln (1 − ŝ) + 3 ln (ŝ)) arcsin2

√
ŝ

2

+4Cl2

(

6 arcsin

√
ŝ

2
+π

)

arcsin

√
ŝ

2
−π2

3
ln(1−ŝ)−3Cl3

(

2 arcsin

√
ŝ

2

)

+6Cl3

(

2 arcsin

√
ŝ

2
+π

)

+
2

3
Cl3

(

6 arcsin

√
ŝ

2
+π

)

+3ζ(3)

]

, (3.23)

where Cl2(φ) = ℑLi2(e
iφ) and Cl3(φ) = ℜLi3(e

iφ).

3.4 Diagrams of figure 1c

The topology figure 1c comes with the master integrals

Ic1 =

∫

[dk][dl]
1

(l2 − z)((k + l)2 − z)((l + q)2 − z)(k + p − q)2

Ic2 =

∫

[dk][dl]
1

(l2 − z)2((k + l)2 − z)((l + q)2 − z)(k + p − q)2

Ic3 =

∫

[dk][dl]
1

(l2 − z)((k + l)2 − z)2((l + q)2 − z)(k + p − q)2
. (3.24)

They all get leading power contributions from the hard region, where IBP identities lead

to a further reduction of Ic2 and Ic3 to Ic1. Ic1 can be calculated by a differential equation

with respect to ŝ, which reads:

d

dŝ
Ic1,h = ǫ

2ŝ − 1

ŝ(1 − ŝ)
Ic1,h − κ(µ, ǫ)

1

ŝ(1 − ŝ)
, (3.25)

where

κ(µ, ǫ) =

(

µ2eγE

)2ǫ

(4π)4
e2iπǫ Γ(−1 + 2ǫ)Γ3(1 − ǫ)

Γ(2 − 3ǫ)
. (3.26)

The most general solution of (3.25) is given by

cŝ−ǫ(1− ŝ)−ǫ −κ(µ, ǫ)(1− ŝ)−ǫ

[

2F1(−ǫ, ǫ; 1 + ǫ; ŝ)

ǫ
+

ŝ 2F1(1 − ǫ, 1 + ǫ; 2 + ǫ; ŝ)

1 + ǫ

]

, (3.27)
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where we have to determine c. We note that both ŝ = 0 and ŝ = 1 are no appropriate initial

conditions. Hence we determine c by calculating the term proportional to ŝ−ǫ in the expan-

sion of Ic1,h around ŝ = 0. The Mellin-Barnes representation (see e.g. [31]) of Ic1,h reads

Ic1,h = −
(

µ2eγE

)2ǫ

(4π)4
e2iπǫ

∫ i∞

−i∞
dt ŝtΓ(−t)Γ(t + 2ǫ)

∫ 1

0
dxx−2ǫ(1 − x)t

×
∫ 1

0
d2y y−1−ǫ−t

1 (1 − y1)
−ǫy−2ǫ−t

2 (1 − y2)
−ǫ(1 − y1y2)

t.

(3.28)

We have to calculate the residue at t = −ǫ in (3.28), which arises due to the integration
∫ 1
0 d2y y−1−ǫ−t

1 (. . .) at y1 = 0. So we can set y1 = 0 in the ellipsis and obtain

Ic1,h = ŝ−ǫ

[

−
(

µ2eγE

)2ǫ

(4π)4
e2iπǫ Γ2(ǫ)Γ3(1 − ǫ)

(1 − 2ǫ)Γ(2 − 3ǫ)

]

+ · · · , (3.29)

where the ellipsis denotes integer powers of ŝ. Hence c reads

c = −
(

µ2eγE

)2ǫ

(4π)4
e2iπǫ Γ2(ǫ)Γ3(1 − ǫ)

(1 − 2ǫ)Γ(2 − 3ǫ)
. (3.30)

In the collinear region k+, l+ ∼ 1, k⊥, l⊥ ∼ √
z, k−, l− ∼ z both Ic2 and Ic3 get a

leading power contribution:

Ic2,c = z−2ǫ

∫

[dk][dl]
1

(l2 − 1)2((k + l)2 − 1)(2l+q− + ŝ)(k2 + 2k−(p − q)+)
=

−
(

µ2eγE

)2ǫ

(4π)2
Γ2(ǫ)

2(1 − ǫ)

z−2ǫ

ŝ
3F2

(

1, 1, ǫ; 2 − ǫ, 1 + 2ǫ;
ŝ − 1

ŝ

)

Ic3,c = z−2ǫ

∫

[dk][dl]
1

(l2 − 1)((k + l)2 − 1)2(2l+q− + ŝ)(k2 + 2k−(p − q)+)
=

−
(

µ2eγE

)2ǫ

(4π)2
Γ2(ǫ)

2(1 − ǫ)

z−2ǫ

ŝ
3F2

(

1, 1, 1 + ǫ; 2 − ǫ, 1 + 2ǫ;
ŝ − 1

ŝ

)

,

(3.31)

where 3F2 is given by

3F2(a1, a2, a3; b1, b2;x) =

∞
∑

n=0

Γ(a1 + n)Γ(a2 + n)Γ(a3 + n)

Γ(a1)Γ(a2)Γ(a3)

Γ(b1)Γ(b2)

Γ(b1 + n)Γ(b2 + n)

xn

n!
, (3.32)

and can be expanded in ǫ by the tools developed in [44, 45].

In the soft region kµ + lµ ∼ √
z only Ic3 contributes in leading power:

Ic3,s = z−ǫ

∫

[dk][dl]
1

l2(l + q)2(l − p + q)2(k2 − z)2
, (3.33)

which is a product of two simple one-loop integrals. There are two further collinear regions

k + l ∼ n+ and k + l ∼ n−, where Ic3 obtains a leading power contribution. However

by an argument similar to that given in the previous subsection we can show that these

contributions have already been taken into account by (3.33).

As described above the subleading powers of (3.24) are obtained via differential equa-

tions with respect to z. Like in the previous cases the terms of the order z0 ln z provide a

check that we have taken all regions contributing at leading power consistently into account.
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3.5 Diagrams of figure 1d

The topology in figure 1d comes with two sets of master integrals.

Id11 =

∫

[dk][dl]
1

(l2 − z)((l − k)2 − z)((l − q)2 − z)((k − p)2 − 1)

Id12 =

∫

[dk][dl]
1

(l2 − z)((l − k)2 − z)2((l − q)2 − z)((k − p)2 − 1)

Id13 =

∫

[dk][dl]
1

(l2 − z)((l − k)2 − z)((l − q)2 − z)2((k − p)2 − 1)

Id14 =

∫

[dk][dl]
1

(l2 − z)((l − k)2 − z)((l − q)2 − z)((k − p)2 − 1)2
(3.34)

and

Id21 =

∫

[dk][dl]
1

k2((l − k)2 − z)((l − q)2 − z)((k − p)2 − 1)

Id22 =

∫

[dk][dl]
1

k2((l − k)2 − z)((l − q)2 − z)2((k − p)2 − 1)

Id23 =

∫

[dk][dl]
1

k2((l − k)2 − z)((l − q)2 − z)((k − p)2 − 1)2
. (3.35)

Let us consider the first set (3.34). In the hard region this set reduces by IBP identities

to Id11 and Id12. These integrals can be calculated by differential equations with respect

to ŝ. We obtain a system of differential equations similar to (3.22) where we have to use

ŝ = 1 as initial condition because the integrals diverge at ŝ = 0. The matrix h(0) has

vanishing off-diagonal elements such that the system of differential equations decouples. In

addition the h(i) contain only terms of the form 1/(1 − ŝ), 1/ŝ and ŝn. So we can reduce

the integrals to harmonic polylogarithms, which were defined in [46]. The way to do this is

very well described in section 2.4 of [47]. Finally we used the program described in [48, 49]

to convert harmonic polylogarithms into common functions like polylogarithms.

The soft region lµ − kµ ∼ √
z leads to a leading power contribution of Id12

Id12,s = z−ǫ

∫

[dk][dl]
1

k2(k − q)2((k − p)2 − 1)(l2 − 1)2
, (3.36)

where we substituted l → l + k. This integral is a product of (A.5) and a simple one-loop

tadpole integral.

The soft region lµ − qµ ∼ √
z leads to a leading power contribution of Id13

Id13,s =
z−ǫ

ŝ

∫

[dk][dl]
1

k2(k2 − 1)(l2 − 1)2
, (3.37)

where we substituted l → l + q. This integral is a product of two simple one-loop integrals.

Let us consider the second set of master integrals (3.35). In the hard region the set

reduces via IBP identities to Id21. We evaluated Id21 by a differential equation with respect

to ŝ. Solving this differential equation is a straightforward calculation, which is analogous

to the way we solved (3.25).
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The soft region lµ − qµ ∼ √
z leads to a leading power contribution of Id22

Id22,s = z−ǫ

∫

[dk][dl]
1

k2(k − q)2((k − p)2 − 1)(l2 − 1)2
, (3.38)

which coincides with (3.36).

Besides the leading power we also need the order z of Id21. It is straightforward to

calculate the order z contribution of the hard region by expanding the integrand of Id21 up

to the order z. Finally the soft regions lµ − kµ ∼ √
z and lµ − qµ ∼ √

z contribute at order

z. Since these regions do not overlap we have to take both of them into account. After an

appropriate shift of l, Id21 can in both regions be cast into the form

Id21,s = z1−ǫ

∫

[dk][dl]
1

k2(k − q)2((k − p)2 − 1)(l2 − 1)
, (3.39)

which is similar to (3.36).

3.6 Diagrams of figure 1e and f

The integrals occurring in the diagrams of figure 1e reduce to (A.2), (A.11), (A.12)

and (A.13). The topology of figure 1f factorizes trivially into two one-loop topologies,

which have already been evaluated exactly in ŝ in [14]. As already mentioned in section 2,

figure 1f does not contribute to the form factors F
(7,9)
1,2 by definition; its effect is, however,

absorbed into a modified Wilson coefficient C9 as in [14].

4. Results

4.1 Results for the form factors F
(7,9)
1,2 in the high q2 region

In section 3 we calculated the two-loop diagrams in figure 1a –e which contribute to the form

factors F
(7,9)
1,2 defined in (2.3). In addition, there are counterterm contributions which have

to be taken into account. These counterterms are qualitatively the same as those discussed

in section III.B of [14]. Because its calculation in the high q2-region is straightforward, we

do not list their explicit results. We only stress that in the following results the c-quark

mass is renormalized in the pole-scheme.

We calculated the renormalized form factors F
(7,9)
1,2 in the large q2-region as expansions

of the form cnm(ŝ)zn lnm z (n = 0, 1
2 , 1, 3

2 , . . .; m = 0, 1, 2, . . .), keeping the full analytic de-

pendence on ŝ (z = m2
c/m

2
b , ŝ = q2/m2

b). We included all orders up to z10. To demonstrate

the convergence of the power expansions, we show in figure 2 the form factors as functions

of ŝ, where we include all orders up to z6, z8 and z10. We use as default value z = 0.1 such

that the cc̄-threshold is located at ŝ = 0.4. One sees from the figures that far away from

the cc̄-threshold, i.e. for ŝ > 0.6, the expansions for all form factors are well behaved.

In table 1, 2 we list numerical values of the form factors for different values of z and

ŝ, retaining the dependence on the renormalization scale µ. We compared our values in

table 1, 2 with the numerical values [50] that were used in [1]. We obtain nearly perfect

agreement, i.e. the difference is always smaller than 1%.
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ŝ

-50

-40

-30

-20

-10

0

10

20

0.4 0.5 0.6 0.7 0.8 0.9 1

ℜF
(9

)
1

ŝ
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Figure 2: Real and imaginary parts of the form factors F
(7,9)
1,2 as functions of ŝ. To demonstrate

the convergence of the expansion in z we included all orders up to z6, z8 and z10 in the dotted,

dashed and solid lines respectively. We put µ = mb and used the default value z = 0.1.

Unfortunately, the form factors are too lengthy to be given explicitly in this pa-

per. Hence, the complete analytical results are attached to the source-code files of the

present paper at www.arxiv.org. The Mathematica file F high.m contains the expressions

for F17HighRe, F17HighIm, F19HighRe, F19HighIm, F27HighRe, F27HighIm, F29HighRe
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√
z ŝ F

(7)
1 F

(7)
2

0.6 −0.928 − 0.408i − 0.856ℓ 5.57 + 2.45i + 5.14ℓ

0.25
0.7 −0.909 − 0.458i − 0.856ℓ 5.45 + 2.75i + 5.14ℓ

0.8 −0.888 − 0.500i − 0.856ℓ 5.33 + 3.00i + 5.14ℓ

0.9 −0.867 − 0.535i − 0.856ℓ 5.20 + 3.21i + 5.14ℓ

0.6 −0.919 − 0.347i − 0.856ℓ 5.52 + 2.08i + 5.14ℓ

0.27
0.7 −0.905 − 0.402i − 0.856ℓ 5.43 + 2.41i + 5.14ℓ

0.8 −0.888 − 0.449i − 0.856ℓ 5.33 + 2.69i + 5.14ℓ

0.9 −0.869 − 0.488i − 0.856ℓ 5.21 + 2.93i + 5.14ℓ

0.6 −0.904 − 0.280i − 0.856ℓ 5.42 + 1.68i + 5.14ℓ

0.29
0.7 −0.896 − 0.342i − 0.856ℓ 5.38 + 2.05i + 5.14ℓ

0.8 −0.883 − 0.393i − 0.856ℓ 5.30 + 2.36i + 5.14ℓ

0.9 −0.867 − 0.437i − 0.856ℓ 5.20 + 2.62i + 5.14ℓ

0.6 −0.879 − 0.208i − 0.856ℓ 5.28 + 1.25i + 5.14ℓ

0.31
0.7 −0.881 − 0.277i − 0.856ℓ 5.29 + 1.66i + 5.14ℓ

0.8 −0.874 − 0.334i − 0.856ℓ 5.24 + 2.00i + 5.14ℓ

0.9 −0.862 − 0.382i − 0.856ℓ 5.17 + 2.29i + 5.14ℓ

0.6 −0.842 − 0.130i − 0.856ℓ 5.05 + 0.779i + 5.14ℓ

0.33
0.7 −0.858 − 0.207i − 0.856ℓ 5.15 + 1.24i + 5.14ℓ

0.8 −0.859 − 0.269i − 0.856ℓ 5.15 + 1.62i + 5.14ℓ

0.9 −0.853 − 0.322i − 0.856ℓ 5.12 + 1.93i + 5.14ℓ

Table 1: Numerical results for the form factors F
(7)
1,2 , for different values of z and ŝ (ℓ = ln µ

mb

).
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Figure 3: Perturbative part of R(ŝ) at NNLL. The solid line represents the NNLL result, whereas

in the dotted line the order αs corrections to the matrix elements associated with O1,2 are switched

off. We use µ = mb. See text for details.
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√
z ŝ F

(9)
1 F

(9)
2

0.6 8.72−22.9i+(−5.47−3.23i)ℓ−1.05ℓ2 13.2+13.6i+(22.1+19.4i)ℓ+6.32ℓ2

0.25
0.7 9.53−19.8i+(−5.13−3.31i)ℓ−1.05ℓ2 10.3+14.5i+(20.1+19.9i)ℓ+6.32ℓ2

0.8 9.92−17.5i+(−4.86−3.36i)ℓ−1.05ℓ2 7.88+14.8i+(18.5+20.2i)ℓ+6.32ℓ2

0.9 10.1−15.8i+(−4.64−3.40i)ℓ−1.05ℓ2 5.93+14.8i+(17.2+20.4i)ℓ+6.32ℓ2

0.6 7.65−26.6i+(−5.66−3.11i)ℓ−1.05ℓ2 15.0+10.9i+(23.3+18.7i)ℓ+6.32ℓ2

0.27
0.7 9.07−22.7i+(−5.29−3.23i)ℓ−1.05ℓ2 12.0+12.6i+(21.1+19.4i)ℓ+6.32ℓ2

0.8 9.78−20.0i+(−5.00−3.30i)ℓ−1.05ℓ2 9.44+13.3i+(19.3+19.8i)ℓ+6.32ℓ2

0.9 10.2−17.9i+(−4.76−3.35i)ℓ−1.05ℓ2 7.35+13.6i+(17.9+20.1i)ℓ+6.32ℓ2

0.6 5.76−31.0i+(−5.88−2.95i)ℓ−1.05ℓ2 16.6+7.46i+(24.6+17.7i)ℓ+6.32ℓ2

0.29
0.7 8.11−26.2i+(−5.47−3.12i)ℓ−1.05ℓ2 13.6+10.1i+(22.2+18.7i)ℓ+6.32ℓ2

0.8 9.32−22.8i+(−5.15−3.22i)ℓ−1.05ℓ2 11.0+11.5i+(20.3+19.3i)ℓ+6.32ℓ2

0.9 9.98−20.3i+(−4.89−3.29i)ℓ−1.05ℓ2 8.81+12.2i+(18.7+19.7i)ℓ+6.32ℓ2

0.6 2.65−35.9i+(−6.12−2.74i)ℓ−1.05ℓ2 17.9+3.06i+(26.1+16.4i)ℓ+6.32ℓ2

0.31
0.7 6.46−30.1i+(−5.67−2.98i)ℓ−1.05ℓ2 15.1+7.05i+(23.4+17.9i)ℓ+6.32ℓ2

0.8 8.41−26.0i+(−5.32−3.12i)ℓ−1.05ℓ2 12.5+9.24i+(21.3+18.7i)ℓ+6.32ℓ2

0.9 9.50−23.0i+(−5.04−3.21i)ℓ−1.05ℓ2 10.3+10.5i+(19.6+19.3i)ℓ+6.32ℓ2

0.6 −2.28−41.7i+(−6.39−2.45i)ℓ−1.05ℓ2 18.4−2.61i+(27.7+14.7i)ℓ+6.32ℓ2

0.33
0.7 3.84−34.6i+(−5.89−2.79i)ℓ−1.05ℓ2 16.3+3.20i+(24.7+16.8i)ℓ+6.32ℓ2

0.8 6.90−29.7i+(−5.51−2.99i)ℓ−1.05ℓ2 13.9+6.42i+(22.4+17.9i)ℓ+6.32ℓ2

0.9 8.60−26.1i+(−5.20−3.12i)ℓ−1.05ℓ2 11.7+8.31i+(20.5+18.7i)ℓ+6.32ℓ2

Table 2: Numerical results for the form factors F
(9)
1,2 , for different values of z and ŝ (ℓ = ln µ

mb

).

and F29HighIm, which represent the real and imaginary part of the form factors F
(7,9)
1,2

in the high ŝ region; they are defined in terms of muh, z and sh standing for µ/mb, z

and ŝ respectively. Additionally this file contains the expressions for DeltaF19HighRe,

DeltaF19HighIm, DeltaF29HighRe and DeltaF29HighIm, which have to be added to the

pole-scheme form factors in order to switch from the pole-scheme to the MS-scheme of

the c-quark mass. For completeness we also provide the file F low.m, which contains the

analogous expressions in the low ŝ region (F17LowRe etc.) taken from [14]. For numerical

purposes we also provide the c++ header files F 1.h and F 2.h that contain the analo-

gously defined functions

double F 17re(double muh, double z, double sh),

double F 17im(double muh, double z, double sh), etc.

valid in both high and low ŝ region. These files need for numerical evaluation of the

harmonic polylogarithms the header file hpl.h, which we provide at the same place.

4.2 Impact on the dilepton invariant mass spectrum in the high q2 region

In this section we briefly discuss the impact of the form factors F
(7,9)
1,2 calculated in this

paper on the q2-spectrum at high values of q2. To this end, we consider as in [14] the
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perturbative part of the ratio

R(ŝ) =
1

Γ(B̄ → Xce−ν̄e)

dΓ(B̄ → Xsℓ
+ℓ−)

dŝ
, (4.1)

where the formulas for the decay rates Γ(b → Xce
−ν̄e) and dΓ(b → Xsℓ

+ℓ−)/dŝ can be

found e.g. in section VI of [14]. The parameterization of dΓ(b → Xsℓ
+ℓ−)/dŝ as specified

in (89) and (90) of [14] is also valid in the high q2 region. All the ingredients contained

in these two eqs. are available for arbitrary q2, except F
(7,9)
1,2,8 . The expressions for F

(7,9)
1,2

were derived in the previous sections of this paper in the high q2 range. The calculations

of the renormalized form factors F
(7,9)
8 is much easier and we therefore immediately give

the results (valid for arbitrary ŝ ∈ [0, 1]):

F
(7)
8 =

4π2

27

(2 + ŝ)

(1 − ŝ)4
− 4

9

(11 − 16ŝ + 8ŝ2)

(1 − ŝ)2
− 8

9

√
ŝ
√

4 − ŝ

(1 − ŝ)3
(9 − 5ŝ + 2ŝ2) arcsin

(√
ŝ

2

)

−16

3

2 + ŝ

(1 − ŝ)4
arcsin2

(√
ŝ

2

)

− 8ŝ

9(1 − ŝ)
ln ŝ − 32

9
ln

µ

mb

− 8

9
π i (4.2)

F
(9)
8 = −8π2

27

(4 − ŝ)

(1 − ŝ)4
+

8

9

(5 − 2ŝ)

(1 − ŝ)2
+

16

9

√
4 − ŝ√

ŝ (1 − ŝ)3
(4 + 3ŝ − ŝ2) arcsin

(√
ŝ

2

)

+
32

3

(4 − ŝ)

(1 − ŝ)4
arcsin2

(√
ŝ

2

)

+
16

9(1 − ŝ)
ln ŝ (4.3)

Figure 3 shows R(ŝ) defined in (4.1), where we set µ = 5 GeV and used
√

z =

mc,pole/mb,pole = 0.29. We used the pole-mass for the b-quark and the MS-mass for the

top-quark and set mb,pole = 4.8 GeV and mt(mt) = 163 GeV [51]. We neglected the finite

bremsstrahlung corrections calculated in [15]. From figure 3 we conclude that for µ = mb

the contributions of the form factors F
(7,9)
1,2 lead to corrections of the order 10% − 15% at

the level of the perturbative part of the normalized q2 spectrum R(ŝ). Integrating R(ŝ)

over the high ŝ region, we define

Rhigh =

∫ 1

0.6
dŝ R(ŝ). (4.4)

Figure 4 shows the dependence of the perturbative part of Rhigh on the renormalization

scale. We obtain

Rhigh,pert = (0.43 ± 0.01(µ)) × 10−5, (4.5)

where we determined the error by varying µ between 2 GeV and 10 GeV. The corrections

due to the form factors F
(7,9)
1,2 lead to a decrease of the scale dependence to 2%.

We should mention at this point that a normalization different from the one in (4.1)

has been proposed in [24]: By normalizing the B̄ → Xsℓ
+ℓ− decay rate to the semileptonic

B̄ → Xue−ν̄e decay rate with the same cut on q2, the large theoretical uncertainties

due to power corrections can be significantly reduced. It was shown explicitly in a recent

phenomenological update [26] that the uncertainties from the poorly known O(1/m3
b ) power

corrections are then under control.
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Figure 4: Perturbative part of Rhigh as function of the renormalization scale µ at NNLL. The solid

line represents the NNLL result, whereas in the dotted line the order αs corrections to the matrix

elements associated with O1,2 are switched off. See text for details.

5. Conclusions

We calculated for the first time the NNLL virtual QCD corrections of the matrix elements

of O1 and O2 in the high q2 region as analytic functions of q2 and mc. While keeping

the full analytic dependence on q2, we evaluated the matrix elements as an expansion in

z up to the 10th power, which is numerically stable for ŝ > 0.6. Making extensive use

of differential equation techniques, we fully automatized the reduction of the higher order

expansion coefficients to the leading and first subleading power, which were obtained via

the method of regions.

Comparing our results for these matrix elements with those of a previous work where

the master integrals were calculated numerically [1], we obtain an agreement up to 1%.

Likewise in coincidence with [1], we find that the corrections calculated in the present

paper lead to a decrease of the perturbative part of the q2-spectrum by 10%−15% relative

to a NNLL result where these contributions are not taken into account and reduce the

renormalization scale uncertainty to 2%.

We provide the rather lengthy results of our calculation in electronic form as Mathe-

matica files and for numerical purposes also as c++ files.
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A. Common master integrals

All integrals are evaluated in d = 4− 2ǫ dimensions. In the following notation we suppress

the positive imaginary part +i0 of the denominators. The integration measure is defined as

[dk] =

(

µ2

4π
eγE

)ǫ
ddk

(2π)d
. (A.1)

A.1 One-loop integrals

A.1.1 2-point integral with two massive lines

=

∫

[dk]
1

(k2 − m2)((k + q)2 − m2)
(A.2)

The double line denotes the massive propagator. We evaluate (A.2) in the two regions

q2 < 4m2 and q2 > 4m2. In the latter one we need the integral in an expansion in m2/q2.

Using Mellin-Barnes representation [52, 28] it is easily seen that we can cast (A.2) into the

following form:

i

(4π)2

(

µ2eγE

q2

)ǫ
1

2πi

∫ i∞

−i∞
dt

(

m2

q2

)t

eiπ(t+ǫ) Γ(−t)Γ(t + ǫ)Γ2(1 − t − ǫ)

Γ(2 − 2t − 2ǫ)
, (A.3)

where the integration contour over t has to be chosen such that −ǫ < ℜ(t) < 0. The poles

on the right hand side of the contour are located at t = n and t = n + 1− ǫ where n ∈ N0.

By closing the integration contour to the right we obtain the power expansion in m2/q2.

Now let us consider the region q2 < 4m2. Up to order ǫ the integral reads:

=
i

(4π)2

(

µ2

m2

)ǫ

×
[

1

ǫ
+

√

4 − x̂

x̂
arcsin

√
x̂

2

+ ǫ

(

4+
π2

12
+

√

4−x̂

x̂
arcsin

√
x̂

2
(−4+2 ln(4−x̂))+2

√

4−x̂

x̂
Cl2

(

2 arcsin

√
x̂

2
+π

))]

,

(A.4)

where we defined x̂ = q2/m2 and Cl2(φ) = ℑLi2(e
iφ).

A.1.2 3-point integral with one massive line

=

∫

[dk]
1

k2(k + q)2((k + p)2 − m2)
, (A.5)

where

p2 = m2, q2 = x̂m2 and x̂ < 1. (A.6)
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The integral is evaluated to

=
i

(4π)2

(

µ2eγE

m2

)ǫ
1

m2

Γ(ǫ)

Γ(2 − 2ǫ)

×
[

Γ(1 − 2ǫ) 2F1(1, 1; 2 − 2ǫ; 1 − x̂) − x̂−ǫeiπǫΓ2(1 − ǫ) 2F1(1, 1 − ǫ; 2 − 2ǫ; 1 − x̂)
]

,

(A.7)

with 2F1 given by (3.7).

A.1.3 3-point integral with two massive lines

=

∫

[dk]
1

k2((k + p)2 − m2)((k + p − q)2 − m2)
, (A.8)

where

p2 = m2, q2 = x̂m2, (p − q)2 = 0 q2 < 4m2. (A.9)

The expansion in ǫ of (A.8) reads

=
i

(4π)2

(

µ2

m2

)ǫ
1

m2(1 − x̂)

×
[

− π2

6
+ 6arcsin2

√
x̂

2

+ ǫ

(

12 ln (1 − x̂) arcsin2

√
x̂

2
+ 4Cl2

(

6 arcsin

√
x̂

2
+ π

)

arcsin

√
x̂

2

− 1

3
π2 ln (1 − x̂) + 6Cl3

(

2 arcsin

√
x̂

2
+ π

)

+
2

3
Cl3

(

6 arcsin

√
x̂

2
+ π

)

+ 2ζ(3)

)

]

,

(A.10)

where Cl3(φ) = ℜLi3(e
iφ)

A.2 Two-loop integrals

A.2.1 Two massive lines

We need the following three sunrise diagrams in an expansion in m2/q2. So as above we

give the Mellin-Barnes representation, from where the expansion can be easily derived.

=

∫

[dk][dl]
1

(k + q)2(l2 − m2)((k + l)2 − m2)

= − 1

(4π)4
q2

(

µ2e2γE

q2

)ǫ

Γ(1 − ǫ)
1

2πi

∫ i∞

−i∞
dt

(

m2

q2

)t

eiπ(2ǫ+t)

× Γ(−t)Γ(t − 1 + 2ǫ)Γ2(1 − ǫ − t)Γ(2 − 2ǫ − t)

Γ(2 − 2ǫ − 2t)Γ(3 − 3ǫ − t)
.

(A.11)
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The residues we have to take into account are located at n, n + 1 − ǫ and n + 2 − 2ǫ

with n ∈ N0.

=

∫

[dk][dl]
1

[(k + q)2]2 (l2 − m2)((k + l)2 − m2)

= − 1

(4π)4

(

µ2e2γE

q2

)ǫ

Γ(−ǫ)
1

2πi

∫ i∞

−i∞
dt

(

m2

q2

)t

eiπ(2ǫ+t)

× Γ(−t)Γ(t + 2ǫ)Γ2(1 − ǫ − t)Γ(2 − 2ǫ − t)

Γ(2 − 2ǫ − 2t)Γ(2 − 3ǫ − t)
.

(A.12)

The dotted line denotes a propagator that has to be taken squared. The residues are

located at n, n + 1 − ǫ, n + 2 − 2ǫ, n ∈ N0.

=

∫

[dk][dl]
1

(k + q)2(l2 − m2)2((k + l)2 − m2)

= − 1

(4π)4

(

µ2e2γE

q2

)ǫ

Γ(1 − ǫ)
1

2πi

∫ i∞

−i∞
dt

(

m2

q2

)t

eiπ(2ǫ+t)

× Γ(−t)Γ(t + 2ǫ)Γ(−ǫ − t)Γ(1 − ǫ − t)Γ(1 − 2ǫ − t)

Γ(1 − 2ǫ − 2t)Γ(2 − 3ǫ − t)
,

(A.13)

with the residues located at n, n − ǫ, n + 1 − ǫ, n ∈ N0.

A.2.2 Three massive lines

We need the following three integrals in an expansion in m2/M2. Therefore we give their

Mellin-Barnes representation.

=

∫

[dk][dl]
1

(k2 − M2)(l2 − m2)2((k + l)2 − m2)

=
1

(4π)4
M2

(

µ2e2γE

M2

)ǫ
1

2πi

∫ i∞

−i∞
dt

(

m2

M2

)t

× Γ(−t)Γ(t − 1 + 2ǫ)Γ2(1 − ǫ − t)Γ(ǫ + t)Γ(2 − 2ǫ − t)

Γ(2 − 2ǫ − 2t)Γ(2 − ǫ)
,

(A.14)

with the residues located at n, n + 1 − ǫ, n + 2 − 2ǫ, n ∈ N0.

=

∫

[dk][dl]
1

((k + p)2 − M2)(l2 − m2)((k + l)2 − m2)

=
1

(4π)4
M2

(

µ2e2γE

M2

)ǫ
1

2πi

∫ i∞

−i∞
dt

(

m2

M2

)t

× Γ(−t)Γ(t − 1 + 2ǫ)Γ2(1 − ǫ − t)Γ(ǫ + t)Γ(3 − 4ǫ − 2t)

Γ(2 − 2ǫ − 2t)Γ(3 − 3ǫ − t)
,

(A.15)
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with p2 = M2 and the residues located at n, n + 1 − ǫ, n/2 + 3/2 − 2ǫ, n ∈ N0.

=

∫

[dk][dl]
1

((k + p)2 − M2)(l2 − m2)2((k + l)2 − m2)

= − 1

(4π)4

(

µ2e2γE

M2

)ǫ
1

2πi

∫ i∞

−i∞
dt

(

m2

M2

)t

× Γ(−t)Γ(t + 2ǫ)Γ(−ǫ − t)Γ(1 − ǫ − t)Γ(1 + ǫ + t)Γ(1 − 4ǫ − 2t)

Γ(1 − 2ǫ − 2t)Γ(2 − 3ǫ − t)
,

(A.16)

with p2 = M2 and the residues located at n, n + 1 − ǫ, n/2 + 1/2 − 2ǫ, n ∈ N0.
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[48] D. Mâıtre, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput.

Phys. Commun. 174 (2006) 222 [hep-ph/0507152].
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